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1. Background

• Land surface emissivity is of critical importance for 
the microwave based precipitation retrieval 
algorithm development.

• Land surface emissivity is highly heterogeneous and 
dynamic. Therefore, it is difficult to estimate using 
physical model.

• We have developed a statistical framework to 
estimate land surface emissivity directly from 
brightness temperature (TBs).

• This method is successfully applied to Southern 
Great Plains (SGP) by Tian et. al. (2015), we now 
extend this framework to the GPM-covered region 
(65S-65N).

• We show two possible applications for this 
instantaneous emissivity estimation method in 
sections 5 and 6.

2. Data and Methodology

• Emissivity retrieved from GMI observed TBs via radiative transfer
model (Joe Munchak)

• GMI TBs (V10, H10, V19, …, V89 and H89, total 9 channels) from
03/2014 to 12/2016, over land portion of 65S-65N.

• Emissivity from 10 to 89 GHz is regressed directly from TB-based
predictors, including TB, TB2, and Microwave Polarization
Difference Index (MPDI, e.g., (V10-H10)/(V10+H10))

• We have tested five different regression models

I. Method 1 (M1): single channel MPDI (10 GHz) and its square (2-
predictor)

II. Method 2 (M2): 4-channel MPDI (10, 19, 37, and 89G), linear terms only
(4-predictor)

III. Method 3 (M3): 9-channel TBs: 10~89 GHz, linear terms only (9-
predictor)

IV. Method 4 (M4): 9-channel TB and 4-channel MPDI, linear terms only
(13-predictor)

V. Method 5 (M5): 9-channel TB, 9-channel TB2, and 4-channel MPDI (22-
predictor)

3. Emissivity Error Estimates

Emissivity error estimates from 
Method1 for 10 to 166 GHz. Only 
v-pol error estimates are shown. 
H-pol have similar geospatial 
pattern.

Emissivity error estimates from 
Method5 for 10 to 166 GHz. 
Only v-pol error estimates are 
shown. H-pol have similar 
geospatial pattern.

• “Error” is defined as: the 
root-mean-square 
difference (RMSD), 
between the method's 
output and the radiative 
transfer model computed 
instantaneous emissivity 
data over the validation 
period (2016)

𝑅𝑀𝑆𝐷 =
1

𝑁


𝑖=1

𝑁

𝑒𝑖 − Ƹ𝑒𝑖
2

• Compared with Method1, 
Method5 clearly has smaller 
error over the whole 
targeted region.

• Surface contamination 
(e.g., snow-covered land) 
likely plays an important 
role in the emissivity error 
estimation. Future work 
seeks to consider the 
surface type.

4. Error Table for M1 to M5 (%)

M1 M2 M3 M4 M5

V10 1.85 1.53 1.43 1.38 1.33

H10 1.68 1.42 1.39 1.36 1.19

V19 1.81 1.48 1.44 1.39 1.39

H19 1.89 1.40 1.29 1.28 1.26

V24 1.99 1.62 1.55 1.51 1.47

V37 2.88 2.26 2.21 1.92 1.47

H37 3.15 2.16 2.01 1.90 1.36

V89 4.47 3.07 3.01 2.28 1.93

H89 4.82 3.02 3.06 2.38 2.03

V166 6.88 6.08 6.01 5.99 5.84

H166 7.33 7.17 7.01 6.92 6.62

We use Method 5 for two applications, with the purpose of improving the 
instantaneous precipitation retrieval results

(1) retrieve instantaneous rain rate by TB temporal variation at   
low freq. channels (e.g., 19 GHz) (see box 5). The idea is to   
use the surface emissivity temporal variation signal due to   
rainfall impact.

(2) re-index the category in the GPROF research database (see box  
6). The idea is to use the instantaneous emissivity as the 
category index, instead of the index from the climatological
emissivity database. 

5. Application I: TB temporal variation at 19 GHz

• As a proof-of-concept, we use 19 GHz from 5 sensors, including GMI, SSMIS 
(F16, F17 and F18), and AMSR2, to derive TB temporal variation (∆TB).

• ∆TB may be defined as: ∆𝑻𝑩 = 𝑻𝑩𝒕𝟎 − 𝑻𝑩𝒕−𝟏 .Where 𝑇𝐵𝑡0is the current TB 

associated with precipitation, and 𝑇𝐵𝑡−1is the preceding TB at the same 

location without precipitation (see poster 232(a) for more details).

• ∆TB can further be refined, using M5 to compute clear-sky 
emissivity:

∆𝑻𝑩 = 𝑻𝑩𝒕𝟎 − 𝑻𝑩𝒕𝟎
𝒔𝒊𝒎

• where 𝑇𝐵𝑡0
𝑠𝑖𝑚 is the simulated TB using preceding clear-sky emissivity 

and current environmental parameters (e.g., temperature)

Correlation coefficients between MRMS precipitation rate 

over SGP and (a) ΔH19, (b) H19, and (c) Δ𝐻19𝑡0
𝑠𝑖𝑚

Conclusion:ΔH19 
correlates more 
strongly with rain 
rate, compare with 
H19 itself (cf. a and 
b). Using emissivity 
can further increase 
this correlation (cf. a 
and c).

6. Application II: Re-index the GPROF database

Preliminary testing in a Bayesian precipitation retrieval framework suggests several areas for 
future work. A case study was performed for a rain event in the southern US on February 1, 
2001, using an orbit not included in the retrieval database. A “control” retrieval is performed 
using TPW, Tsfc, and TELSEM surface class as database indices, resulting in precipitation rates 
similar to those retrieved by the operational GPROF algorithm. A second retrieval is performed 
using the same database but now indexed using emissivity calculated using the method 
described here as the index in place of TELSEM class. As shown in the figures, rain rate 
patterns are retrieved successfully but are generally low. There is no retrieval in areas with 
inland water (Mississippi river) as the coefficients cannot be calculated there. The lower rain 
rates are a result of poor representation of high rain rates in the more stratified database. 
Future work will experiment with solutions such as a doubling of the database period for land 
pixels from one year to two, and moving from a Bayesian framework, which tends to smooth 
out higher rain rates, to other retrieval methods.

7. Conclusions 

• A real-time land surface emissivity estimation method is extended to the GPM-covered region. The parameters in this method are directly derived from TBs without any ad hoc tuning, making it ideal for real-time application

• It is found that Method 5 has the best capability to predict the land surface emissivity, which captures the dynamic and heterogeneous emissivity characteristics over various regions, with average error of 1.33% to 6.62%

• We applied this technique to (1) retrieve instantaneous rain rate by TB temporal variation at low freq. channels (e.g., 19 GHz); and (2) re-index the category in the GPROF research database.

• Tian, Y., et al., 2015, An examination of methods for estimating land surface microwave emissivity, J. Geophys. Res. Atmos., 120, 11,114–11,128, doi:10.1002/2015JD023582.

• You, Y., C. Peters-Lidard, J. Turk, S. Ringerud, and S. Yang, 2017: Improving over land precipitation retrieval with brightness temperature temporal variation. J. Hydrometeor. doi:10.1175/JHM-D-17-0050.1.

• You, Y., C. Peters-Lidard, J. Turk, S. Ringerud, and S. Yang, N. Wang, R. Ferraro, 2017: Retrieving precipitation rate by brightness temperature temporal variation at 19 GHz over land. J. Geophys. Res. (submitted).
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Retrieved Rain Rate - emissivity

• As expected, Method 1 performs 
worst for emissivity prediction, 
because it only relies on 10 GHz TB 
information.

• Method 5 has the best capability to 
estimate the emissivity for all 
channels from 10 to 166 GHz. 

• Future work seeks to extend this 
analysis to all constellation 
radiometers.


